
Co-Scheduling of Computation and Data on Computer Clusters

Alexandru Romosan, Doron Rotem, Arie Shoshani and Derek Wright ∗

Lawrence Berkeley National Laboratory,
University of California,

Berkeley, California 94720

Abstract

Scientific investigations have to deal with rapidly
growing amounts of data from simulations and exper-
iments. During data analysis, scientists typically want
to extract subsets of the data and perform computa-
tions on them. In order to speed up the analysis, com-
putations are performed on distributed systems such as
computer clusters, or Grid systems. A well-known dif-
ficult problem is to build systems that execute the com-
putations and data movement in a coordinated fash-
ion. In this paper, we describe an architecture for ex-
ecuting co-scheduled tasks of computation and data
movement on a computer cluster that takes advantage
of two technologies currently being used in distributed
Grid systems. The first is Condor, that manages the
scheduling and execution of distributed computation,
and the second is Storage Resource Managers (SRMs)
that manage the space usage and content of storage
systems. This is achieved by including the information
about the availability of files on the nodes provided
by SRMs into the advertised information that Condor
uses for the purpose of matchmaking. The system is
capable of dynamically load balancing by replicating
popular files on idle nodes. To confirm the feasibility of
our approach, a prototype system was built on a com-
puter cluster. Several experiments based on real work
logs were performed. We observed that without repli-
cation compute nodes are underutilized and job wait
times in the scheduler’s queue are longer. This archi-
tecture can be used in wide-area Grid systems since
the basic components are already used for the Grid.

∗Visiting LBNL from the Computer Sciences Department,
University of Wisconsin

1 Introduction

It is typical of scientific investigations to have two
phases: the data generation phase, and the data anal-
ysis phase. The data generation phase is usually the
result of running a large simulation or the collection
of data from experiments. Using modern computer
systems the amount of data generated in the data gen-
eration phase is massive, in the order of terabytes to
petabytes. In the data analysis phase, the scientist typ-
ically wants to extract a subset of the data based on
some criteria. For example, a simulated climate mod-
eling dataset may have data over the entire globe, with
multiple height levels for tens of variables, such as
temperature, humidity, wind velocity, etc. This large
simulation dataset is usually stored on some mass stor-
age system, such as IBM’s High Performance Storage
System (HPSS). During the analysis phase, a scientist
may want to select only temperature over the equator
for sea-surface level for 100 years. This requires some
way of selecting the files that contain the relevant data,
downloading the relevant files to the analysis system
and processing only these files.

Another example of the need for co-scheduling of
compute and data movement involves Particle Physics
data mining and analysis of detector data. The Data
Acquisition System in these detectors records infor-
mation about collision events between particle beams.
The information is stored in multiple files, where
each file contains information about thousands of such
events. Typical analysis of data involves searching for
rare and interesting processes and is performed in mul-
tiple phases involving classification and summariza-
tion. In addition, the same data files may be shared
simultaneously by several different groups of scien-
tists with different interests. In general, the problem

discussed here is that of effective scheduling of a col-
lection of jobs, each requiring one or more input files
to run on a group of servers. Each server in the cluster
may have one or more compute slots and a disk cache
that can hold some fraction of the data files needed as
input for the analysis. A given job can be scheduled
on a selected server if: (i) the server has at least one
available compute slot; (ii) all the data files needed by
the job are available on the disk cache at that server.

This introduces the problem of scheduling data
movement in coordination with scheduling of compu-
tation on a cluster, and the software systems to execute
and monitor the schedules. Data movement may be
cheap (from one server on the cluster to another) or
expensive (from a remote archive).

The above two phases of operations reflect the man-
ner in which most scientific applications run. To speed
the data analysis phase, the analysis is partitioned into
parallel jobs, and distributed to multiple compute sys-
tems. In a Grid environment the compute systems are
distributed over the wide area network, and the data
sources are usually on remote storage systems. In or-
der to perform the parallel analysis, the data have to be
moved to the compute nodes, and the jobs scheduled
on these nodes. There are Grid middleware compo-
nents designed to schedule compute jobs on distributed
nodes, and components designed to manage storage
and move files between nodes. However, there are cur-
rently no components that perform co-scheduling the
data and the computation, in part because of the com-
plexity of such middleware systems. Developing a real
practical system to perform co-scheduling is one of the
most difficult challenges in the Grid domain. We ad-
dress this challenge in this paper.

We describe a system that was developed to per-
form co-scheduling of data and computation by tak-
ing advantage of two technologies used in distributed
Grid systems. The first is Condor, that manages the
scheduling and execution of distributed computation,
and the second is Storage Resource Managers (SRMs)
[1] that manage the space usage of storage systems and
the dynamic content of the storage. In order to have a
controlled experimental environment, the system was
developed on a small cluster of workstations that do
not share memory, and have their own independent at-
tached disk. In order to achieve co-scheduling, some
modifications to Condor and SRMs had to be made,

but as will be discussed next, we achieved coordina-
tion between these systems with relatively modest en-
hancements.

1.1 Organization of paper

The rest of the paper is organized as follows. In
Section 2 we explain the main contributions of this
work emphasizing the ability to build a complex co-
scheduling system by using existing mature compo-
nents. In Section 3 we describe the architecture of
the co-scheduling system and the software modules
developed for this project. In Section 4 we describe
the replication algorithms used for evaluating our sys-
tem. In Section 5 the data used in our experiments
and the test environment are described and the perfor-
mance results are analyzed. Finally, in Section 6 some
conclusions and future work are presented.

1.2 Related Work

The development of the co-schedueling system fa-
cilitated tests on a real co-scheduling system with real
logs (taken from a high-energy physics experiment).
Most of the previous work in this area is based on sim-
ulations.

In [2] several replication algorithms are examined
and evaluated using simulations. The results in that
paper show that data aware scheduling on the grid re-
sults in significant improvements in job response time.
In [3] the authors describe simulation of a Grid sys-
tem and evaluation of different file replication algo-
rithms. The authors also examined various cache re-
placement policies. The research in [4] describes a
system for treating data transfer events as real jobs.
The system allows checkpointing and monitoring of
data transfers. This work is complementary to our
work as we can use such a system (called Stork) for
scheduling data movement while using SRMs to keep
track of cache contents and enforce caching policies.
Another approach to perform replication management
on the grid uses economic models [5] where some in-
centive is offered to resource owners for contributing
and sharing resources, and motivates resource users
to think about tradeoffs between the processing time
(e.g., deadline) and computational cost (e.g., budget),
depending on their QoS requirements. In [6] the au-
thors use an auction protocol for selecting the optimal

2

replica of a data file. The work in [7] and [8] deals
with prediction functions to make informed decisions
about pre-fetching of data.

2 Main Contributions

Job scheduling systems are very complex and take
a large effort to implement and support. While there
are examples of such systems that are available com-
mercially or as open source products, these systems
manage scheduling of compute slots only, not the co-
scheduling of data with the compute slots. Examples
of such packages include SUN’s Grid Engine software,
Load Sharing Facility (LSF), Portable Batch System
(PBS), and Condor (from the University of Wisconsin,
http://www.cs.wisc.edu/condor).

Developing a system that can co-schedule compute
and data resources is a very large undertaking. It
took years to perfect the systems that perform only
compute-slot scheduling. We address in this work the
possibility of using existing software components to
tackle this complex challenge. Our starting point was
to select a job scheduling system and a storage man-
agement system, and design a combined co-scheduling
system without making major changes to these sys-
tems. The main contribution of this paper is in the
methodology and architectural design that succeeded
to bring this co-scheduling system into fruition.

The key to this success was the flexibility of the ex-
isting systems we chose to work with. In particular,
the Condor system is designed to perform matches be-
tween jobs and worker nodes based on an open-ended
description of what to match on. Thus, we could eas-
ily extend the descriptions to include sets of files that
a worker node has at any one time. This was com-
plemented by the flexibility of Storage Resource Man-
agers to manage their content dynamically (i.e. using
automatic caching policies), and their ability to keep
files for jobs that are scheduled to be matched as well
as remove unneeded files after the jobs finish.

We encountered one issue that could be a barrier
to the scaling of the co-scheduling system. The issue
was of advertising the data files that a node currently
has. Since disk caches of worker nodes can be very
large and contain thousands of files, providing this
information to the component that performs matches
may overwhelm the scheduler. While one can design

more efficient schedulers with smart indexing technol-
ogy, there was no certainty that this will scale, and it
would require a serious enhancement of the existing
system. Our solution, instead, is to provide each node
with a component that extracts the information of the
requested files only, so that it can be advertised in the
classAd along with the node’s resources. This compo-
nent would then ask the Storage Resource Manager to
provide information about which of these files it has.
This modification to the advertising component solved
this potential problem, and made our design practical
and scalable.

We now have a real system where various algo-
rithms that were previously tested only by simulations
can now be tested in a realistic environment. Fur-
thermore, while we implemented this architecture on
a cluster, it is straight-forward to adapt this design to
wide-area Grid systems, because the components are
already functional as Grid middleware.

3 Architecture

To achieve co-scheduling, the scheduler must have
information on the content of each machine’s disk
cache, as well as the availability of compute-slots on
each machine. The problem is one of matching each
job to the machine that has the files needed by the job.
This is achieved by providing the Condor scheduler in-
formation on the dynamic content in the disk caches in
the compute nodes. This information is provided by
the SRMs that reside on each computing node. We
accomplish this by extending the standard mechanism
used by Condor to describe a worker node to also in-
clude information on the files available on the node.

The advantages of using Condor and SRMs are
numerous. Both of these systems are open-source.
Condor provides job scheduling using an extensible
“match-making” technology, as well as initiation and
monitoring of jobs on the compute nodes. SRMs pro-
vides dynamic storage allocation, with the ability to
“pin” and “release” files to ensure that they stay on
the disk cache when they are needed. SRMs also have
their own local policies for removing files that were
released and are not needed. The combination of these
two technologies is a fast and efficient way to imple-
ment and test the co-scheduling setup.

3

The architecture and the components we used to
achieve co-scheduling are shown in Figure 1. As can
be seen, the master node has three parts of the Condor
system: i) condor schedd (the scheduler daemon) that
is responsible for scheduling jobs and keeping their
state information, ii) the condor collector that collects
and organizes all the information about nodes in the
form of classAds (classified advertisements); the clas-
sAds contain information about compute-slots in the
nodes, and their hardware and software capabilities,
and iii) the condor negotiator whose function is to find
a match for each scheduled job; the match is done by
finding a compute-slot that has at least the capabilities
required by the job being matched.

The other part of the Condor system is a compo-
nent, called the condor startd (start daemon), whose
function is to start jobs running on a node, to collect
information on the node capabilities and generate the
classAd, and to monitor the progress of the job. If the
job completes successfully, the condor startd adver-
tises the availability of the slot by issuing a new clas-
sAd. If the job is interrupted and was not completed, it
communicates with condor schedd to schedule the job
again. As can be seen from Figure 1, the condor startd
was installed on every worker node.

A disk version of an SRM, called a DRM, devel-
oped at LBNL (http://sdm.lbl.gov/srm) is also installed
on every worker node. Its function is to manage the
disk cache associated with the node. That includes al-
locating space for every file that has to be moved into
the disk cache, keeping track of popular files (so called
“hot files” that are accessed multiple times), and re-
moving unwanted files (“cold” files). The DRM per-
forms this function by “pinning” a file as soon as the
file was advertised as required by a job to be sched-
uled to run on that node, and by releasing the file as
soon as the job is finished. Note that a file may be
pinned multiple times if multiple jobs are using it, and
the DRM keeps track of that as well. Finally, the DRM
also initiates file transfers from the mass storage sys-
tem we use, by communicating with a version of an
SRM, called a Hierarchical Storage Manager (HRM)
that can request file staging out of the mass storage
system (we use HPSS). The DRM can also request a
file from a neighbor node if it is asked to do so.

As mentioned above, the technique of achieving co-
scheduling is to add in the classAd the information

Figure 1. The architecture of the co-
scheduling system using Condor and DRM
components.

on what files are available on each node. However,
this can cause a major problem, since a node can have
thousands of files, and the classAd will become too ex-
pensive to manage and match against. Our solution to
this problem is to put in the classAds only files that
are relevant to the pending jobs. The ability to achieve
this solution was critical to the practical success of this
co-scheduling problem. We identified two components
that are needed to achieve this functionality and the co-
scheduling operation: the Job Decomposition Module
(JDM) and the File Scheduling Module (FSM). Both
of these components are located on the master node.
We explain their functionality next.

The JDM is the component which accepts jobs sub-
mitted by clients. Each job consists of an executable,
a set of input files and, optionally, a set of output
files. The JDM parses this information and decom-
poses each job into one or more jobs each request-
ing a single file †. The JDM performs the following
tasks: i) decomposing all incoming jobs dynamically;
ii) generating a list of files that is the union of all re-
quested files; iii) communicating with each condor

4

startd and provide them with this list; iv) providing
the FSM with a list of jobs to be scheduled with Con-
dor’s condor schedd; v) keeping track of completed
jobs; and vi) providing the client with information on
the progress of the job, as well as when it completes.

The FSM was designed to interact with the Con-
dor system. It is responsible for the following ac-
tions: i) schedule with each DRM the files that it
should acquire; ii) schedule all jobs with Condor’s
condor schedd; iii) monitor the progress of jobs by in-
quiring from Condor which jobs are being delayed; iv)
analyze the reasons for the delays and issue replication
requests to DRMs; iv) decide when pre-staging of files
from HPSS is warranted, and v) notify the JDM when
a job completes. As can be seen, the algorithms for
optimizing the co-scheduling belong in the FSM.

There were relatively small changes required to ac-
complish the coordination between Condor and the
DRMs. The main change required from the con-
dor startd is the ability to accept a list of files from the
JDM and invoke the DRM to find which of these files
the DRM has. Condor startd then includes these files
in the classAd it advertises. The DRM had to be mod-
ified to provide a response to an inquiry that amounts
to “which of these files do you currently have?”.

Taking advantage of the fairly complex middleware
systems developed over many years by making rela-
tively modest modifications was the reason for our suc-
cess in developing the co-scheduling system. This pro-
vided us with a real environment to explore the behav-
ior of the system under different scheduling strategies.
We describe in Section 5 some of the results achieved
so far by running experiments on this system.

3.1 Information Flow

Figure 2 describes the information flow between the
components of the co-scheduling system. For ease of
explanation the steps are labeled in the logical order
of flow, however, in reality these steps may repeat and
run asynchronously. The steps are as follows:

†We note that in HEP applications it is always possible to run
an analysis job on a single file at a time because processing of
collision events contained in files are independent of each other.
However, in other applications it may be necessary to specify the
subset of files that are needed concurently to execute the analysis
job.

Figure 2. The steps of the co-scheduling sys-
tem

1. Job requests arrive to the Job Decomposition
Module (JDM), are parsed and decomposed to
multiple smaller jobs, and are passed to the File
Scheduling Module (FSM).

2. The FSM schedules data requests to the DRMs
according to the scheduling algorithm it uses.
The simplest one is round robin.

3. The FSM composes a list of all requested files
that have not been processed yet. It extracts the
information on job completion from Condor logs.
This list of files is passed to condor startd. The
FSM also submits the jobs to Condor.

4. condor startd communicates with its local DRM
to find out which of the files in the requested-

5

file list it actually has. These are refered to as
existing-files in the figure.

5. condor startd puts the existing-files into a clas-
sAd that it passes to the condor collector.

6. Condor finds a match for an available compute-
slot on a node that has the file needed by the job
and schedules that job.

7. The FSM checks with the condor negotiator for
jobs in queue. If there are free compute-slots, it
chooses a file to replicate based on the length of
time the jobs requesting it have been waiting in
the queue (for details see section 4).

This iterative process is performed continuously
when new jobs arrive, or when the monitoring thread
triggers a replication action. The files in the DRMs
stay in the cache until space is needed. The DRMs
currently use a least-recently-used caching algorithm.

4 Scheduling Algorithms

In typical particle physics analysis applications a
job that requires n files can be decomposed into n

smaller jobs each requiring one of the files. This in-
creases the opportunity for parallelism since after per-
forming decomposition, some subset of the n jobs can
be scheduled to run in parallel on different servers.
According to this simple model, we assume that the
original jobs have been decomposed and each of the
resulting jobs requires exactly one file. The schedul-
ing problem we are considering here consists of the
following inputs:

• a set of files F = {f1, f2, f3, . . . , fn}

• a set of queued jobs J = {j1, j2, . . . , jm} each
requesting a single file from F

• a set of worker nodes N = {N1, N2, . . . , Nk}
where each node Ni is associated with one or
more compute-slots and a cache C(Ni) that con-
tains some subset of the files in F .

Let f(ji) be the file requested by job ji. The job ji

can be assigned to run on a node Nk (ji is matched
to Nk in Condor terminology) if (a) Nk has an avail-
able compute slot and (b) the cache C(Nk) contains

the file f(ji) . Among the many possible scheduling
algorithms we chose to evaluate two basic algorithms.
These are described below:

scheduling with no-replication. This algorithm re-
tains at most one copy of a file on the cluster. It
copies a file, fi, from remote storage to a node
Nk (selected in a round-robin fashion) only if fi

is requested by a job and cannot be found in any
of the caches of the worker nodes. As long as fi

is not purged from the cache C(Nk), any subse-
quent jobs that request the file fi will be automat-
ically matched with Nk by Condor once Nk has
a free compute slot. In order to avoid purging fi

from the cache C(Nk) prematurely, it is pinned
by the system as long as there are jobs waiting
for it in the queue.

scheduling with replication. Files may be replicated
in the cluster across multiple nodes. A replication
decision is made whenever there are jobs wait-
ing in the queue and there are available compute-
slots in the system. The selection of which file to
replicate next is determined by a weight function
w(fi) computed as follows: For each file fi re-
quested by one or more jobs in the queue, w(fi) is
equal to the total time these jobs have been wait-
ing for it. The file with the maximal w(fi) is then
replicated on one the worker nodes with a free
compute slot chosen at random. The rationale
behind this replication algorithm is that “popu-
lar” files should be available on multiple nodes
for better load-balancing of the system and jobs
that have been waiting for a long time should get
some priority to avoid starvation.

The first algorithm (scheduling with no-replication)
attempts to minimize file transfers from the mass stor-
age system across the network and also saves on disk
storage requirements. It may be attractive in situations
where file transfers and disk storage costs are relatively
expensive resources. The second algorithm (schedul-
ing with replication), tends to move more files but re-
duces queue waiting times and improves system uti-
lization. We chose to experiment first with these two
basic algorithms since they are simple to implement
and do not introduce excessive overhead costs on the
system. We are planning to evaluate more elaborate

6

algorithms that take into account node capacities, dif-
ferent replication costs (remote vs. local) using math-
ematical optimization techniques.

5 Experimental Results

5.1 Description of physics analysis environment
and data characteristics

0

1000

2000

3000

4000

5000

6000

7000

8000

200 400 600 800 1000 1200 1400 1600 1800
x 10

6
File Size (bytes)

N
o.

 o
f u

ni
qu

e
fil

es

Figure 3. Unique file size distribution

We experimented with data from BaBar,
which is a High Energy Physics experi-
ment with over 600 world-wide collaborators
(http://www.slac.stanford.edu/BFROOT). The data
for this experiment is stored on tapes at the Stanford
Linear Accelerator Collider (SLAC) managed by
IBM’s Mass Storage System HPSS storing over 1.3
petabytes of data on about 13,000 tapes managed
by 6 StorageTek tape silos. To deliver data to jobs
in a reasonable time the system is currently backed
by 160TB of disk cache implemented on thousands
of physical disks bound into large arrays managed
by Sun’s Solaris 9 UFS. The analysis jobs run on a
cluster of hundreds of nodes accessing the persistent
data through a high performance data server [9]. The
work logs used in our paper were extracted from
trace data produced by the data server. The raw
trace data contained, for each job, only its job id, the
files accessed by the job, and the time of access of

each file. We had to match this information with the
file characteristic data stored in a Oracle database
at SLAC in order to get file size information. We
analyzed trace logs taken from October 1 to October
26, 2004. During this time interval 504,493 jobs
were submitted requesting a total of 2,028,541 files,
86,378 of which were unique. Figure 3 shows the size
distribution of the 86,378 unique files. Note that the
maximum size of a file is close to 2GB, due to file
system limitations. There is also a significant number
of files of size less than 200MB. The large files most
likely represent raw detector data, whereas the smaller
sized files are in most cases filtered data (“skims”) for
the purpose of user analysis.

0

500

1000

1500

2000

2500

3000

3500

4000

x 10 2

200 400 600 800 1000 1200 1400 1600 1800
x 10

6
File Size (bytes)

To
ta

l n
um

be
r o

f r
eq

ue
st

s

Figure 4. Requested file size distribution
In Figure 4 we plot the number of file requests as a

function of file size. We note that the large files appear
in more requests as compared to the small files. One
possible explanation for this access pattern is the auto-
mated running of “skimming” which use the raw data
files as input to produce the user-analysis files.

5.2 Description of the cluster environment

We ran our experiment on a cluster of 8 single and 1
dual CPU 1.5GHz AMD Athlon processors, each with
a 20GB disk cache and 2GB of RAM for a total of
10 compute slots. The cluster nodes are on a Giga-
Bit network. We installed one DRM on each machine.

7

Condor software and the FSM were installed on the
dual processor. The data files needed for the analysis
jobs were stored on the HPSS mass storage system at
LBNL. We observed that the average transfer rate from
the HPSS system was 15MB/s.

5.3 Experimental setup and performance results

Each experiment consisted of a sample of 1500 jobs
from the pool of jobs presented above. Assuming
the duration of a typical analysis job is proportional
to the size of the input, we simulated a job by run-
ning 100 empty for-loops per each byte requested. We
experimented with different job arrival rates, and for
the purpose of this study we chose an interval of 60
seconds between job submissions based on the aver-
age job execution time to match the job arrival rate
to the job service rate. Shorter arrival intervals would
lead to a saturation of computing resources, while a
very long arrival interval would underutilize the clus-
ter. Based on these parameters, each experiment took
about 27 hours of continuous running time. Further-
more, we had to set the Condor configuration parame-
ters to much smaller values than the default values. For
example, the default resource matching negotiation cy-
cle, whose default value is 300 seconds was lowered to
60 seconds to make the matchmaking more responsive
to our job arrival and data transfer rates.

 0

 5

 10

 15

 20

 25

 30

 0 20000 40000 60000 80000 100000

Jo
bs

 in
 q

ue
ue

 (a
vg

.)

Time (s)

with replication
no replication

Figure 5. Average number of queued jobs
In Figure 5 we compare the two algorithms in terms

of the number of jobs waiting to be matched in the
Condor queue during the running time of the experi-
ment. As expected, the number of jobs in the queue
under the with-replication algorithm is almost always

smaller than that of the no-replication algorithm. This
is due to the fact that the with-replication algorithm
removes jobs from the queue as soon as compute slots
become available.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20000 40000 60000 80000 100000

Id
le

 c
om

pu
te

-s
lo

ts
 (a

vg
.)

Time (s)

with replication
no replication

Figure 6. Average number of idle compute-
slots

In Figure 6 we compare the system utilization un-
der the two algorithms by counting the number of idle
compute-slots during the running time of the experi-
ment. Existence of idle compute-slots while there are
jobs waiting in the Condor queue represent wasted sys-
tem resources. Again the with-replication algorithm
achieves better system utilization and shows almost al-
ways fewer idle compute-slots as compared with the
no-replication algorithm.

Next we looked at the average time that jobs waited
in the Condor queue under both algorithms. Waiting
time in the queue is calculated as the number of sec-
onds between the time a job arrives at the system until
the time it is matched by Condor with some compute-
slot and submitted for processing. The first impor-
tant observation here is that the with-replication al-
gorithm has a maximum waiting time of 4000 sec-
onds whereas the no-replication has a maximum wait-
ing time of 25000 seconds. This represents a dramatic
improvement (a factor of 6) in terms of worst case be-
haviour. The mean waiting time of the with-replication
algorithm is also better (by about 25%).

6 Conclusions and future plans

The main accomplishment described in this paper is
the ability to put together a co-scheduling system from

8

1

10

10 2

0 500 1000 1500 2000 2500 3000 3500 4000

(a) with replication Entries
Mean

1500
637.6

1

10

10 2

0 5000 10000 15000 20000 25000

(b) no replication Entries
Mean

1500
808.9

Wait time in queue (s)

Jo
bs

Figure 7. Waiting time in queue

existing Grid middleware components that were de-
signed to manage compute and storage separately, by
making relatively small enhancement to these systems.
The problem of optimizing the behavior of these sys-
tems is the task of an external File Scheduling Module
that makes file replication choices based on monitor-
ing information of queues from the Condor scheduler.
File replication is facilitated by making requests to the
DRMs on each node. Garbage collection from the
nodes disk caches are performed by the DRM based on
usage policies. Thus, the tasks of scheduling, execut-
ing, monitoring, file movement, and garbage collec-
tion are performed by the existing Condor and DRM
systems.

Future work includes trying out various optimiza-
tion algorithms that are typically based on approxi-
mation results from scheduling theory [10] as comput-
ing optimal solutions for the co-scheduling problem is
known to be NP-complete [11]. While we performed
simulations to compare several algorithms, it is impor-
tant to verify the performance on real systems. Fur-
thermore, the next step will be to implement and test
this combined co-scheduling system on Grid testbeds.
Since the components we used on the cluster are gen-
eral Grid components we believe that applying them
in a real Grid system will be straightforward. The
real challenge will be to measure and understand per-

formance in an uncontrolled environment such as the
Grid.

Acknowledgement

We thank Ekow Otoo from LBNL for his early par-
ticipation in this project, and John Bent from the Uni-
versity of Wisconsin for pointing out relevant work.
This work was supported by the Director, Office of
Advanced Scientific Computing Research, of the U.S.
Department of Energy under contract No. DE-AC03-
76SF00098.

References

[1] A. Shoshani, A. Sim, and J. Gu, “Storage re-
source managers: Essential components for the
grid,” in Grid Resource Management: State of
the Art and Future Trends. Kluwer Academic
Publishers, 2003.

[2] K. Ranganathan and I. Foster, “Decoupling com-
putation and data scheduling in distributed data-
intensive applications,” in Proc. 11th IEEE In-
ternational Symposium on High Performance
Distributed Computing (HPDC-11 2002), Edin-
burgh, Scotland, 23-26 July, 2002, pp. 352–358.

[3] W. Bell, D. Cameron, L. Capozza, A. Millar,
K. Stockinger, and F. Zini, “Simulation of dy-
namic grid replication strategies in optorsim,”
in Proc. Grid Computing - GRID 2002, Third
International Workshop, Baltimore, MD, USA,
November 18 2002, pp. 46–57.

[4] T. Kosar and M. Livny, “Scheduling data place-
ment activities in grid,” University of Wisconsin
- Madison Computer Sciences Department, Tech.
Rep. UW-CS-TR-1483, July 2003.

[5] R. Buyya, H. Stockinger, J. Giddy, and
D. Abramson, “Economic models for manage-
ment of resources in peer-to-peer and grid com-
puting,” in Proceedings of the SPIE Interna-
tional Conference on Commercial Applications
for High-Performance Computing, Denver, USA,
August 20-24 2001.

9

[6] W. H. Bell, D. G. Cameron, A. P. M. Ruben
Carvajal-Schiaffino, K. Stockinger, and F. Zini,
“Evaluation of an economy-based file replication
strategy for a data grid,” in International Work-
shop on Agent based Cluster and Grid Comput-
ing at CCGrid 2003, Tokyo, Japan. IEEE Com-
puter Society, 2003.

[7] L. Capozza, K. Stockinger, and F. Zini, “Pre-
liminary evaluation of revenue prediction func-
tions for economically-effective file replica-
tion,” CERN Geneva, Switzerland, Tech. Rep.
DataGrid-02-TED-020724, July 2002.

[8] J. B. Weissman, “Predicting the cost and benefit
of adapting data parallel applications in clusters,”
J. Parallel Distrib. Comput., vol. 62, no. 8, pp.
1248–1271, 2002.

[9] J. Becla and D. L. Wang, “Lessons learned from
managing a petabyte.” in CIDR, 2005, pp. 70–83.

[10] M.Pinedo., Scheduling: Theory, Algorithms, and
Systems. Prentice Hall, 2001.

[11] J. Bent, D. Rotem, and A. Romosan, “Coor-
dination of data movement with computation
scheduling on a cluster,” LBNL, Tech. Rep.
LBNL-55591, July 2002.

10

